

EGNOS Performance at System CDR

S. Lannelongue, J.C. Levy, X. Derambure, H. Delfour, D. Flament *Alcatel Space Industries*

Nav Convention 2002 Novembre 12-15, 2002 Nice (France)

Ш

m

Presentation overview

IntroductionSystem Performance requirements

System Architecture

Performance Justification Methodology

Methodology

Tools

CPF CDR main performance results

System CDR main performance results

Conclusion

D

m

Introduction

<u>-</u>

□ × □

□ >

m

Z

 In April 2002 EGNOS has passed its Critical Design Review

- A key element of this review was the justification of system performance foreseen to be achieved at this stage of the project.
- Indeed some requirements are expressed with very low probabilities (Integrity and Continuity) and demands special care
- Relevant methodology had to be put in place together with the adapted tools to support it

Introduction - Performance

EGNOS Performance requirement can be split into 4
 categories which are Accuracy, Integrity, Continuity and
 Availability to be met on a specific service area

/ e n	EGNOS AOC SYSTEM REQUIREMENTS	Level 2 (wo Iono corrections)	Level 3A (with all corrections including Iono)
	XNSE 95%	100 m (H)	7.7 m (V) 7.7m (H)
0	Protected Alert Limit	556m (H)	20 m (V) 20 m (H)
1	Integrity Risk	10 ⁻⁷ /h	2.10 ⁻⁷ /appr.
	Time to alort (2)	10 s	68
×	Continuity risk Navigation Service	10 ⁻⁵ /h	8.10 ⁻³ /appr.
D	Availability	0.999	0.95 (Objective 0.99)
_	Service Area	ECAC	ECAC land masses

Introduction- Architecture

EGNOS Performance relies first on a robust architecture

Ш

 \Box

Justification Methodology - Accuracy

Justification Methodology - Accuracy

- Accuracy expressed as a 95% statistics
- Only nominal behaviour affects such type of figure
 Low event probability are drown in the statistics
 - Accuracy is quantified under nominal conditions in terms of:
 - RIMS Environment
 Return from site surveys to define noise, multipath and interference levels
 - Ionosphere Conditions
 - Provided by ESA with the support of Ionosphere European expert (IET)
- Satellite constellation
 Nominal MOPS constellation (no failure)

m

XPL Available: Yes

The XPL Availability is thus "the proportion of time where the Protection Level is below the Alert Limit"

(III)

The Space Segment & Algos

The User Segment

The Ground Segment

- Ground Segment
 Contribution
- Space Segment Contribution
- SRD 3.1

 SVMTTF-MTR

 Space Segment Contribution Assessment

 Space Segment Contribution Assessment
- User segment contribution is based on applicable budgets defined in the MOPS

- Requirement expressed with very low probability Service Level 2: 10⁻⁵ per hour
- Necessity to refine the models to include impact of low occurrence probability events (so called Feared Events)

Justification Methodology - Integrity

Justification Methodology - Integrity

Conservative Approach

- Pseudo-range to position domain transfer
 - •integrity is assessed in the pseudo-range domain (i.e. integrity of the CPF Output)
 - This is a very conservative approach
 - *System Impact probability selected = 100%
 - *Estimation showed that System Impact is in between 0.4% and 4%
- •CPF anticipated models are more conservative than the simulations results
- Anticipated Occurrence Probabilities are more conservatives than estimation with Real Data

D

 \Box

Simulation Tools

Petri Net - FTA - FMECA (RAMS Tool)

EGNOS Service Volume Simulator (ESVS)

EGNOS End to End Simulator (EETES)

CPF CDR Main Outcomes

CPF Satellite
Monitoring Capability
PRN09 Example

NavSat

2002 Satellite navigation and positioning world show

CPF CDR Main Outcomes

CPF GIVE IntegrityCapability

Nominal Conditions Large Margins

Extreme Conditions

Margins Reduced

but bounding

capabilities

maintained

D

CPF CDR Main Outcomes

Compliance to Message MOPS Specifications The Message is what is used by the system

1	Message	Maximum	Compliance
	type	update interval	status to
		time specified in	MOPS
G)		the MOPS	requirement
Ф			
>	1	120 epochs	99.7 %
	2,3,4,5+6	6 epochs	99.9 %
_	2	60 epochs	100%
	7	120 epochs	99.7 %
_	9	120 epochs	99.7 %
	10	120 epochs	99.7 %
	12	300 epochs	99.9 %
	17	300 epochs	100. %
O	18	300 epochs	100. %
Z	25	120 epochs	99.8 %
	26	300 epochs	99.8 %

System Accuracy

Horizontal (95%)
3.5 m (Average)
2.6 m (Min)
Vertical (95%)
2.9 m (Average)
3.9 m (Min)

Good performance on ECAC Land Masses

System availability

System availability contributor

System Integrity

- Integrity Insured in Pseudo-range domain Mainly Based on CPF results
- After consolidation at System level conclusions are
 - *Integrity Insured on the whole service area
 - *Fault free contribution is negligible with respect to feared events
 - *More than 97% of feared event contribution is due to
 - >Excessive Multipath at RIMS level
 - >Code Carrier Incoherence on the GEO satellite

D

 \Box

System Continuity

System Continuity contributor

Fault free represents
17% of the total budget

70% of the feared event budget is due to excessive multipath at RIMS level

Continuity Feared Events

m

Conclusion

- The main outcomes of the analysis performed for EGNOS

 CPF and system Critical Design Review have been presented
- Those results demonstrated during CDR that the proposed
- EGNOS design was able to fulfil EGNOS PDR commitments
 - Integrity risk below specification on the whole ECAC area
 - •Continuity and availability compliance areas covers most of the ECAC land masses as required.
- What shall be also underlined is the methodology used by
- > EGNOS System Engineering team for performance
- justification.
- This has been recognised as key contributor to a successful CDR completion.

Πì